Εμφάνιση αναρτήσεων με ετικέτα DLR. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα DLR. Εμφάνιση όλων των αναρτήσεων

Σάββατο 5 Σεπτεμβρίου 2015

Teledyne Selects Orbit Logic Software for ISS Imaging Platform Operations



Orbit Logic announced today that Teledyne Brown Engineering, Inc. (TBE) of Huntsville, AL has selected Orbit Logic’s Collection Planning & Analysis Workstation (CPAW) and Order Logic software for its Multi User System for Earth Sensing (MUSES) ground system. Order Logic will be used for imagery order management with CPAW as the planning engine.

MUSES, an Earth-observation platform being developed by TBE, will be externally located on the International Space Station (ISS) and is capable of hosting four instruments simultaneously. As part of collaboration with the German Aerospace Center, or DLR, the first instrument to be hosted aboard MUSES will be the DLR Earth Sensing Imaging Spectrometer, or DESIS. Working in the wavelength range from visible through the near infrared, this spectral imaging instrument will enable the precise data acquisition of images of Earth’s surface. The MUSES platform is planned for launch to the ISS in 2016, followed by the DESIS in early 2017.

Order Logic will provide web-based management and tracking of imaging requests. Order Logic allows TBE and other users to create, edit, and track the status of imagery orders; visualize planned imaging operations; and access feasibility tools that enhance understanding of when new images of specific targets are likely to be available. Logins, configurable permissions, and other access management features ensure that users are limited to the capabilities and data for which they are authorized.

 
 CPAW Tabular Planning GUI

 
 Order Logic Web Application 


Orbit Logic's Collection Planning & Analysis Workstation (CPAW) software uses high fidelity system modeling and advanced scheduling algorithms to generate valid and optimized imagery collection plans for use in spacecraft operations, analysis, or imagery ordering. CPAW covers everything from contact scheduling and recorder management to power and antenna modeling while accounting for imaging platform maneuverability, system availability, timing constraints, and sensor capabilities. CPAW will be configured to model the MUSES platform and attached sensors, including DESIS. CPAW will generate operational imaging plans and downlink plans within ISS and MUSES operational constraints.

“Orbit Logic came in with a set of configurable COTS tools that addressed all of our mission planning and order management needs.” said Ray Perkins, Chief Engineer, Hyperspectral Remote Sensing with Teledyne Brown Engineering. “The folks at Orbit Logic are very experienced at mission planning, and their unique products will allow us to save time and money and focus resources on the hardware and other aspects of the mission and ground system.”

Orbit Logic ( www.orbitlogic.com) specializes in mission planning and scheduling solutions for aerospace and geospatial intelligence. Orbit Logic's operationally proven COTS products create better plans faster with fewer resources for all mission phases. Orbit Logic engineering services are available to configure, customize, and integrate Orbit Logic’s mobile, web-based, and desktop applications to provide turn-key operational solutions that leverage the latest available technologies to meet customer goals and exceed their expectations.

For additional information regarding this press release contact Ella Herz at 301-982-6234 or via email at Email Contact

Σάββατο 22 Αυγούστου 2015

Nepal earthquake deformations



By Stefan Mühlbauer




Radar images can be used to examine deformations of the land surface. Therefore an area of interest has to be recorded before and after a disruption event presuming the exactly equal orbit and inclination of the sensor. The wave patterns of the two images are combined and turned into a 3d surface. After removing topography, very small deformations (mm) can be detected even within space borne derived imagery. The technique is called radar interferometry (InSAR). It tells how much a land surface moved in relation to the satellite in orbit.

Nepal and particularly the area around its capital Kathmandu were hit by a strong earthquake on April 25 2015. The 7.8 magnitude earthquake claimed over 5000 dead people and affected millions of people living in that area.

For the earthquake in Nepal, Sentinel-1A’s swath width of 250 km over land surfaces has allowed for an unprecedented area size to be analysed from a single scan. Two images taken before and after the earthquake were combined. The resulting interference patterns reveal the extent of deformation, whereas one colour fringe refers to a deformation of around half of the used radar wave length (ca 2,8cm). Thus, colour tapes lying close together imply a high deformation whereas dispersed colour bands refer to less affected surface disruptions. Radar imagery from the Sentinel-1A satellite shows that the maximum land deformation is only 17 km from Nepal’s capital, Kathmandu, which explains the extremely high damage experienced in this area.


Interferogram over Kathmandu, Nepal, derived from two Sentinel-1A scans on 17 and 29 April 2015 – before and after the 25 April earthquake. Each ‘fringe’ of colour represents about 2.8 cm of deformation. The large amount of fringes indicates a large deformation pattern with ground motions of 1 m or more. Source: ESA





The interference pattern itself does not reveal weather the surface lifted or dropped. Scientists from the German Aerospace Agency (DLR) have used data from Sentinel 1-A to create a map that reveals how much and in which direction the land in and around Kathmandu moved in relation to the satellite in orbit. The map is counterintuitive in the sense that blue colors (negative value) indicate areas that raised, while the yellowish to reddish tone reveals areas that sagged (positive values) due to the earthquake. The map shows that the terrain in Kathmandu raised by around 0.8m, the mountainous area right in the North of Nepal’s capital thrusted skywards of up to 2m! At the same time the mountainous region farther North of Kathmandu dropped by less than a meter.


Changes in elevation and position that occurred as a result of the April 25, 2015 earthquake in Nepal are depicted in this image based on satellite data. Areas in blue were raised by about 0,8 meters, the ones in dark blue were lifted up to 2,5 meters. (Source: DLR)

Imagery from the Sentinels and other Copernicus contributing missions are coordinated by ESA to be used by the Copernicus Emergency Management Service (EMS), which supports all phases of the emergency management cycle. Sentinel-1A is the first satellite for the Copernicus environment-monitoring programme led by the European Commission. Its all-weather, day-or-night radar imageryis particularly suited to support impact assessment for many types of geohazards. The satellite is planned to provide systematic observations of tectonic and volcanic areas at global level.



Source: ESA, Discover